

Inkrementale Drehgeber

Standard Edelstahl, Hohlwelle, optisch

5826 (Hohlwelle)

Gegentakt / RS422

Die inkrementalen Hohlwellen-Drehgeber Typ 5826 sind mit ihrem Edelstahl-Gehäuse vor allem für Einsätze in Applikationen geeignet, die höchste Anforderungen an die Materialbeschaffenheit stellen.

Edelstahl-Drehgeber werden daher oft in Bereichen eingesetzt, die aufgrund hoher hygienischer Anforderungen aggressiven Reinigungsmitteln ausgesetzt sind.

Temperatur-

Hohe

Schutzart

Passgenau

· Mit Kabelanschluss

· Durchgangswelle mit 10 mm oder 12 mm Durchmesser

· Bis Schutzart IP66

Variabel

- · Hohe Auflösung mit Impulszahlen bis 5000 Imp./Umdr.
- · Vielfältige Möglichkeiten der Anbindung durch unterschiedliche Schnittstellen und Spannungsversorgungen

Bestellschlüssel **Hohlwelle**

8.5826

1 X X 1

a Flansch

1 = mit Federelement kurz

b Hohlwelle $6 = \emptyset 10 \text{ mm}$

 $8 = \emptyset 12 \text{ mm}$

• Ausgangsschaltung / Versorgungsspannung

- 1 = RS422 (mit Invertierungen) / 5 V DC
- 7 = RS422 (mit Invertierungen) / 5 ... 30 V DC
- 4 = RS422 (mit Invertierungen) / 10 ... 30 V DC
- 5 = Gegentakt (ohne Invertierungen) / 5 ... 30 V DC 2 = Gegentakt (ohne Invertierungen) / 10 ... 30 V DC
- 6 = Gegentakt (mit Invertierungen) / 5 ... 30 V DC
- 3 = Gegentakt (mit Invertierungen) / 10 ... 30 V DC

d Anschlussart

1 = Kabel radial, 1 m PVC-Kabel

• Impulszahl

25, 50, 60, 100, 125, 200, 250, 256, 300, 360, 500, 512, 600, 720, 800, 1000, 1024, 1200, 1250, 1500, 2000, 2048, 2500, 3000, 3600, 4000, 4096, 5000

(z.B. 100 Impulse => 0100) Andere Impulszahlen auf Anfrage

Inkrementale Drehgeber

Standard Edelstahl, Hohlwelle, optisch

5826 (Hohlwelle)

Gegentakt / RS422

Technische Daten

Mechanische Kennwerte				
Drehzahl	max. 6000 min ^{-1 1)}			
Massenträgheitsmoment	ca. 6,0 x 10 ⁻⁶ kgm ²			
Anlaufdrehmoment (bei 20°C)	< 0,05 Nm			
Gewicht	ca. 0,4 kg			
Schutzart nach EN 60529	IP66			
Arbeitstemperaturbereich	ohne Dichtung	-20°C +80°C		
Material	Welle	nicht rostender Stahl		
Schockfestigkeit nach EN 60068-	2000 m/s ² , 6 ms			
Vibrationsfestigkeit nach EN 600	100 m/s ² , 10 2000 Hz			

Elektrische Kennwerte						
Ausgangsschaltung	RS422 (TTL-kompatibel)	Gegentakt				
Versorgungsspannung	5V DC (±5 %) od. $1030V$ DC	10 30 V DC				
Stromaufnahme (ohne Last) ohne Invertierung mit Invertierung	- typ. 40 mA / max. 90 mA	typ. 55 mA / max. 125 mA typ. 80 mA / max. 150 mA				
Zul. Last/Kanal	max. ±20 mA	max. ±30 mA				
Impulsfrequenz	max. 300 kHz	max. 300 kHz				
Signalpegel HIGH LOW	min. 2,5 V max. 0,5 V	min. +V - 2,5 V max. 2,0 V				
Flankenanstiegszeit t _r	max. 200 ns	max. 1 μs				
Flankenabfallzeit t _f	max. 200 ns	max. 1 µs				
Kurzschlussfeste Ausgänge ²⁾	ja ³⁾	ja				
Verpolschutz der Versorgungsspannung	nein; 10 30 V DC: ja	ja				
UL-Zulassung	File 224618					
CE-konform gemäß	EMV-Richtlinie 2004/108/EG					
RoHS-konform gemäß	Richtlinie 2002/95/EG					

Anschlussbelegung

Ausgangsschaltung	Anschlussart	Kabel (nicht verwendete Adern sind vor Inbetriebnahme einzeln zu isolieren)											
1, 2, 3, 4, 5, 6, 7	1	Signal:	0 V	+V	0 Vsens ⁴⁾	+Vsens ⁴⁾	Α	Ā	В	B	0	0	Ť
		Kabelfarbe:	WH 0,5 mm ²	BN 0,5 mm ²	WH	BN	GN	YE	GY	PK	BU	RD	Schirm

Bei Ausführung RS422 ist das Leitungsende bei großen Leitungslängen mit entsprechendem Wellenwiderstand abzuschließen.

+V: Versorgungsspannung Drehgeber +V DC 0 V: Masse Drehgeber GND (0 V)

0 Vsens / +Vsens: Über die Sensorleitungen des Drehgebers kann die am

Geber anliegende Spannung gemessen und bei Bedarf

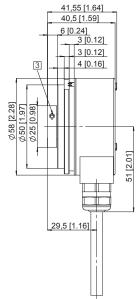
entsprechend erhöht werden.

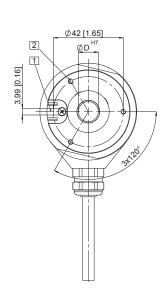
A, \overline{A} : Inkremental-Ausgang Kanal A B, B: Inkremental-Ausgang Kanal B

0, $\overline{0}$: Referenzsignal

PH ±: Steckergehäuse (Schirm)

Maßbilder


Maße in mm [inch]


Flansch mit Federelement kurz Flansch Typ 1

1 Nut Drehmomentstütze Empfehlung: Zylinderstift nach DIN7, ø 4 [0.16]

2 3 x M3, 5 [0.2] tief

 $\begin{tabular}{ll} \hline \end{tabular}$ Empfohlenes Drehmoment für Klemmring 1,0 Nm

¹⁾ Im Dauerbetrieb max. 3000 min⁻¹, belüftet

²⁾ Bei korrekt angelegter Versorgungsspannung

³⁾ Nur max. ein Kanal darf kurzgeschlossen sein:

Bei +V = 5 V DC ist Kurzschluss gegenüber einem anderen Kanal, 0 V, oder +V zulässig. Bei +V = 10 ... 30 V DC ist Kurzschluss gegenüber einem anderen Kanal oder 0 V zulässig.

Die Sensorleitungen sind intern mit der Spannungsversorgung verbunden.
Spezielle Netzteile regeln über die Rückführung der Spannung den Spannungsabfall an langen Leitungen nach.